User:Karlhahn/User e-irrational
<math>e \ne \frac {p} {q}</math> | This user can prove that the number, e, is irrational. |
Usage: {{User:Karlhahn/User e-irrational}}
PROOF:
If <math>\scriptstyle e</math> were rational, then
- <math>e = \frac {p} {q}</math>
where <math>\scriptstyle p</math> and <math>\scriptstyle q</math> are both positive integers. Hence
- <math>q e = p</math>
making <math>\scriptstyle qe</math> an integer. Multiplying both sides by <math>\scriptstyle (q-1)!</math>,
- <math>q! e = p(q-1)!</math>
so clearly <math>\scriptstyle q! e</math> is also an integer. By Maclaurin series
- <math>e = \sum_{k=0}^\infty \frac {1} {k!}</math>
Multiplying both sides by <math>\scriptstyle q!</math>:
- <math>q! e = \sum_{k=0}^\infty \frac {q!} {k!}</math>
The first <math>\scriptstyle q+1</math> terms of this sum are integers. It follows that the sum of the remaining terms must also be an integer. The sum of those remaining terms is
- <math>r = \sum_{k=1}^\infty \frac {q!} {(q+k)!}</math>
making <math>\scriptstyle r</math> an integer. Observe that
- <math>\frac {q!} {(q+k)!} < \frac {q!} {q! q^k} = \frac {1} {q^k}</math>
So
- <math>r = \sum_{k=1}^\infty \frac {q!} {(q+k)!} < \sum_{k=1}^\infty \frac {1} {q^k}</math>
But
- <math>\sum_{k=1}^\infty \frac {1} {q^k} = \frac {1} {q-1}</math>
This means that <math>\scriptstyle 0 < r < \frac {1} {q-1} \le 1</math>, which requires that <math>\scriptstyle r</math> be an integer between zero and one. That is clearly impossible, hence <math>\scriptstyle e</math> is irrational